Breeding Peanuts Resistant to Preharvest Aflatoxin Contamination

What is Aflatoxin?

- "Aflatoxins are a family of toxins produced by certain fungi that are found on agricultural crops such as maize (corn), peanuts, cottonseed, and tree nuts."
- "The main fungi that produce aflatoxins are Aspergillus flavus and Aspergillus parasiticus, which are abundant in warm and humid regions of the world."
- "Aflatoxin-producing fungi can contaminate crops in the field, at harvest, and during storage."

Where Is Aflatoxin a Problem?

What are the Consequences of Aflatoxin Exposure?

- 4.5 billion people in developing countries consume foods contaminated with aflatoxin
- Consumption leads to chronic and acute hepatocellular injury and child stunting
- Liver cancer is a frequent outcome of aflatoxin exposure, particularly in immunocompromised individuals
- In Kenya 2004, 317 cases of aflatoxin poisoning were reported with 125 deaths due to contaminated maize

What are the Consequences of Aflatoxin Exposure?

FDA Action Levels for Aflatoxin

AFLATOXIN

Commodity	Action Level (ppb)	Reference
Animal Feeds		
Corn and peanut products intended for finishing (i.e., feedlot) beef cattle	300	CPG 683.100
Cottonseed meal intended for beef, cattle, swine, or poultry (regardless of age or breeding status	300	CPG 683.100
Corn and peanut products intended for finishing swine of 100 pounds or greater	200	CPG 683.100
Corn and peanut products intended for breeding beef cattle, breeding swine, or mature poultry	100	CPG 683.100
Corn, peanut products, and other animal feeds and feed ingredients but excluding cottonseed meal, intended for immature animals	20	CPG 683.100
Corn, peanut products, cottonseed meal, and other animal feed ingredients intended for dairy animals, for animal species or uses not specified above, or when the intended use is not known	20	CPG 683.100
Brazil nuts	20	CPG 570.200
Foods	20	CPG 555.400
Milk	0.5 (aflatoxin M1)	CPG 527.400
Peanuts and Peanut products	20	CPG 570.375
Pistachio nuts	20	CPG 570.500

Arachis hypogaea
2n=4x=40; allotetraploid, inbred, homozygous

Where Does Aflatoxin Accumulate in Peanut?

How Can Pre-harvest Aflatoxin Contamination Be Mitigated?

How Can Pre-harvest Aflatoxin Contamination Be Mitigated?

irrigation insect resistance Host fungal resistance Stress aflatoxin biosynthesis resistance Environment Aflatoxin insecticides Invasion Competitiveness Fungus atoxigenic strains

Aflatoxin Mitigation Through Insect Control

- Lesser cornstalk borer damages pods during drought stress
- LCB damage is associated with increased aflatoxin
- Drought management (irrigation) can reduce risk
- Insecticides (Lorsban) can reduce risk but irrigation also needed for pesticide to be effective
- Lorsban is detrimental to predatory insects (beneficials) resulting in outbreaks of other insect pests such as spider mites

Insects and Aflatoxin

- Lesser cornstalk borer is difficult to monitor and control with chemicals because the larvae feed on the underground pods
- Lesser cornstalk borer limited genetic resistance in cultivated peanut gene pool
- Alternative sources of genetic resistance
 - Transgenes (Bt)
 - Wild relatives

Aflatoxin Mitigation Through LCB Control

Aflatoxin Mitigation Through LCB Control

Synthetic cry1Ac

Introduced into Marcl in 1995

- Lines with resistance to lesser cornstalk borer (LCB) selected
- Field tests for insect resistance conducted in '97, '98, '99
- Significant reduction in LCB damage and aflatoxin contamination

Imposing stress with rainout shelters

Table 3. Correlation coefficients of aflatoxin contamination with leaf temperature and visual drought stress ratings from plots in Tifton, GA in 1992.

		Measurement date									
		Aug.				Sept.					
	20	24	28	30	4	8	10	15	21		
Aflatoxin & leaf temp.	.19*	.25**	.26**	.21*	.21*	.22*	.25**	.23*	.22*		
Aflatoxin & visual rating		.04	.04	.35**	.09	.16	.21* .	19*	.21*		

^{*,** =} significant at P = 0.05 and 0.01, respectively.

		Mean Relative
Entry	N	Toxin
ICGV93305	3	7.1
A69	3	4.2
ICG4750	3	3.9
ICGV1124	3	3.8
A47	4	3.6

Table 3. Correlation between aflatoxin contamination, yield and drought stress evaluation methods of the peanut genotypes planted at the Gibbs Farm shelter.

			– Chlorophyll fluorescence ^c –			— Visual rating ^d –				
	Aflatoxin ^a	Pod Yield ^b	PI_{ABS}	F_v/F_m	$\varphi_{\rm EO}$	AM	PM	SCMR ^e	CT^{f}	CTD^g
Pod yield	-0.44**h									
PI_{ABS}	-0.27	0.26								
F_v/F_m	-0.62**	-0.12	0.56**							
$\phi_{ m EO}$	-0.26	0.25	0.98**	0.59**						
Visual rating AM	0.85**	-0.40	-0.29	-0.41*	-0.25					
Visual rating PM	0.85**	-0.26	-0.24	-0.50**	-0.21	0.98**				
SCMR	-0.57**	0.32	0.22	0.43*	0.21	-0.60**	-0.62**			
CT	0.73**	0.01	-0.09	-0.64**	-0.10	0.73**	0.84**	-0.50**		
CTD	-0.81**	0.19	0.15	0.42*	0.15	-0.79**	-0.85**	0.37	-0.92**	
NDVI	-0.79**	0.17	0.25	0.62**	0.24	-0.84**	-0.87**	0.75**	-0.81**	0.70**

Pre- and Post-harvest Resistance

Entry ICG 1471 (55 ICGV 88145	Relative Toxin 5-437) 0.5 0.5		1-9.jpg	2-4.jpg	4-1.jpg	8-9.jpg	10-8.jpg	12-2.jpg
Entry	Relative Yield (wd/ww)	Relative Toxin (log10)		Contract of the second	•	-		
ICG 862	0.74	1.06	13-4.jpg	15-4.jpg	16-3.jpg	18-1.jpg	20-3.jpg	23-5.jpg
ICG 8285	0.65	1.25	***				- 12	
ICG 1703	0.41	1.12	* *	1	1000	***		
ICG 4729	0.58	0.97	25-9.jpg	26-1.jpg	27-10.jpg	28-2.jpg	30-5.jpg	31-10.jpg
ICG 6667	0.32	2.34		Sar.		1		
ICG 6766	0.43	2.71	32-1.jpg	32-7.jpg	34-7.jpg	36-10.jpg	37-9.jpg	39-8.jpg
ICG 1471	0.48	1.18	15	1	1	<u></u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4
Fleur 11	0.41	1.42	41-10 ing	43-2 ing	45-9 ing	48-3 ing	56-7 ing	59-1 ing

Post-harvest Resistance

Aflatoxin B1 in ppb

Post-harvest Resistance

Genetic Factors in ICG 1471 (55-437) for Aflatoxin Reduction

 Improvement of aflatoxin resistance in peanut by identifying genomic regions controlling post-harvest aflatoxin production that may also contribute to pre-harvest reduction in contamination

Transgenic Approaches

Combine existing host resistance with transgene resistance

- Insect resistance
- Defensins
- Reactive oxygen scavenging enzymes
- Host-induced gene silencing

Aflatoxin biosynthesis gene cluster

Biological Control Through Competition

Conclusion – All Technologies Must Be Made Available To Combat Aflatoxin Contamination

irrigation insect resistance Host fungal resistance Stress aflatoxin biosynthesis resistance Environment Aflatoxin insecticides Invasion Competitiveness atoxigenic strains

Acknowledgements

UGA Tifton

- Ye Chu
- Josh Clevenger
- Walid Korani
- Davis Gimode
- Jake Fountain

- Chandler Levinson
- Raegan Wiggins
- Stephanie Botton
- Kathleen Marasigan
- Yinping Guo

UGA Athens

- Scott Jackson
- Soraya Bertioli
- David Bertioli
- Dongying Gao
- Carolina Chavarro

USDA-ARS

- Corley Holbrook
- Corley's team
- Bob Lynch

Agricultural Research Service

https://www.fda.gov/regulatory-information/search-fdaguidance-documents/guidance-industry-action-levelspoisonous-or-deleterious-substances-human-food-andanimal-feed#afla

